AN ELEMENTARY INTRODUCTION TO THE LANGLANDS PROGRAM PDF

In September , Edward Frenkel gave a series of four lectures at MSRI, ” Elementary Introduction to the Langlands Program”. The videos of the lectures. An Introduction to the Langlands Program present a broad, user-friendly introduction to the Langlands program, that is, Elementary Theory of L- Functions I. Discover Archives, a shared portal for exploring archival holdings at the University of Toronto and its federated colleges.

Author: Gardarr Maubar
Country: India
Language: English (Spanish)
Genre: Video
Published (Last): 13 December 2007
Pages: 188
PDF File Size: 11.1 Mb
ePub File Size: 14.62 Mb
ISBN: 925-2-58840-999-5
Downloads: 5263
Price: Free* [*Free Regsitration Required]
Uploader: Moogukasa

References [Enhancements On Off] What’s this? MR [Art 3] J. Arthur, A trace formula for reductive groups. I, II, Duke Math. James ArthurThe trace formula in invariant formAnn. MRhttps: MR [Be Ze] I.

Mathematical Sciences Research Institute

Surveys 31no. MR [Bo 2] A.

MR [Bo Shaf] Z. Shafarevich, Number theoryAcademic Press, KutzkoBourbaki Seminar, Introdcution. MR [Cas2] W. Casselman, “GL n “, Proc. MR [Cas Fro] J. BrightonThompson Book, Washington, D. MR [Deligne] P. MR [Deligne 2] P. II, Lecture Notes in Math. MR [De Se] P. Serre, Formes modulaires de poids 1, Ann. MR [Drin] V. Drinfeld, Langlands conjecture for GL 2 over function elejentaryProc. Dwork, On the Artin root numberAmer. MR [Flick 1] Y. MR [Ge l] S. Gelbart, Automorphic forms on adele groupsAnn.

MR [Ge2] S. Gelbart, Elliptic curves and automorphic representationsAdv. MR [Ge 3] S. Fomin, Geodesic flows on manifolds of constant negative curvatureUspekhi Mat. Nauk 7no. Piatetski-Shapiro, Representation theory and automorphic functionsSaunders, Philadelphia, MR [Ge Ka] I. France, Paris,pp.

  KBU8K DATASHEET PDF

MR [God 2] R. Godement, Introduction aux travaux de SelbergSem. Jacquet, Zeta-functions of simple algebrasLecture Notes in Math.

MR [Goldstein] L.

Goldstein, Analytic number theoryPrentice-Hall, MR Kenneth I. GrossOn the evolution of noncommutative harmonic pprogramAmer. Monthly 85no.

Gelbart : An elementary introduction to the Langlands program

MR [Harder] G. Harder, Chevalley groups over function fields and automorphic formsAnn. MR [Ho 2] R. MR [Ho 3] R. MR [Humph] J. Humphreys, Linear algebraic groupsSpringer-Verlag, MR [Jacquet 1] H. MR [Jacquet 2] H. Jacquet, Automorphic forms on GL 2. MR [J L] H. Shalika, On Euler products and the classification of automorphic representations. MR [Kaz] D. Kazhdan, Some applications of the Weil representationJ.

MR Robert E. MR [Kudla] S. Kudla, Relations between automorphic forms produced by theta-functionsModular Functions of One Variable. VI, Lecture Notes in Math. Langlands, Euler productsYale Univ. Press, New Haven, Conn. MR [Langlands 2] R. Langlands, Elementady in the theory of automorphic formsLecture Notes in Math.

Langladns [Langlands 3] R. Langlands, L-functions and automorphic representationsProc. LanglandsAutomorphic representations, Shimura varieties, and motives. MR [Langlands 6] R. Langlands, Shimura varieties and the Selberg trace formulaCanad. LanglandsStable conjugacy: Li, On the representations of GL 2.

  MANIFIESTO CLUETRAIN PDF

Lipsman, Group representationsLecture Notes in Math.

“An elementary introduction to the Langlands Program” / by Stephen Gelbart – Discover Archives

MR [Mac] I. Macdonald, Spherical functions on a group of p-adic typeRamanujan Inst. MR George W. MackeyHarmonic analysis as the exploitation of symmetry—a historical surveyBull.

Moy, Local constants and the tame Langlands correspondenceThesis, Univ.

MR [Ogg] A. MR [Os Wa] M. Piatetski-Shapiro, L-functions for GSp 4preprint, Piatetski-Shapiro, Tate theory for reductive groups and distinguished representationsProc. PlatonovArithmetic theory of algebraic groupsUspekhi Kntroduction. Nauk 37no. SchiffmannAutomorphic forms constructed from the Weil representation: Monodromiefiltration und verschwindende Zyklen in ungleicher CharakteristikInvent.

MR [Rib] K. MR [Rob l] A. MR [Rob 2] A. MR [Rob 3]A. Robert, Lectures on automorphic formsQueens Univ. MR [Saito] H. Saito, Automorphic forms and algebraic extensions of number fieldsLectures in Math. MR [Sa Sh] P. Shalika, Characters of the discrete series of representations of SL 2 over a local fieldProc.

MR [Selberg] A. MR [Serre] J. Shalika, Some conjectures in class field theoryProc. MR [ShaTan] J. Tanaka, On an explicit construction of a certain class of automorphic formsAmer.